Skripsi/Tugas Akhir
Analisis Pengaruh Durasi Bermain Mobile Legends Terhadap Prestasi Mahasiswa Universitas Dipa Makassar dengan Metode Multilabel Klasifikasi
ABSTRAK
Penelitian ini bertujuan untuk menganalisis pengaruh durasi bermain Mobile Legends terhadap prestasi akademik dan non-akademik mahasiswa Universitas Dipa Makassar dengan pendekatan multi-label classification menggunakan algoritma Gradient Boosting. Data dikumpulkan dari 361 mahasiswa melalui kuesioner yang telah diuji validitas (p-value < 0,001) dan reliabilitasnya (Cronbach's Alpha = 0,918). Variabel independen meliputi durasi bermain, frekuensi bermain, waktu belajar, dan jumlah lomba yang diikuti. Sementara itu, variabel dependen adalah prestasi akademik (IPK) dan prestasi non-akademik (organisasi/lomba). Data dianalisis menggunakan Python dengan pendekatan Binary Relevance. Evaluasi model dilakukan menggunakan Hamming Loss, Subset Accuracy, dan R² Score. Hasil menunjukkan model memprediksi prestasi akademik dengan R² = 0,947 dan prestasi non-akademik dengan R² = 0,9999. Temuan ini menunjukkan bahwa kebiasaan digital mahasiswa berpengaruh terhadap capaian prestasi, dan pendekatan machine learning dapat digunakan dalam analisis perilaku pendidikan.
Kata Kunci: Mobile Legends, Prestasi Akademik, Prestasi Non-Akademik, Multi-Label Classification, Gradient Boosting
ABSTRACT
This study aims to analyze the impact of Mobile Legends playing duration on academic and non-academic performance of students at Universitas Dipa Makassar using a multi-label classification approach with the Gradient Boosting algorithm. Data were collected from 361 students using a questionnaire validated (p-value < 0.001; Cronbach's Alpha = 0.918). The independent variables included playing duration, frequency, study time, and number of competitions. The dependent variables were academic performance (GPA) and non-academic performance (organization/competition involvement). The data were analyzed using Python and the Binary Relevance method. The model was evaluated using Hamming Loss, Subset Accuracy, and R² Score. Results showed that the model predicted academic performance with R² = 0.947 and non-academic performance with R² = 0.9999. These findings indicate that students' digital habits influence performance outcomes and that machine learning offers a promising tool in educational behavior analysis.
Keywords: Mobile Legends, Academic Achievement, Non-Academic Achievement, Multi-Label Classification, Gradient Boosting
SKR 25-51 0922TI | SKR 25-51 TAT a - 0922TI | Perpustakan UNDIPA (Rak Skripsi/Tugas Akhir) | Tidak Dipinjamkan-No Loan |
Universitas DIPA Makassar
NPP 7371142D1000002
Jln. Perintis Kemerdekaan KM.9
Telp. (0411)587194
Hotline: +6281228221994
WhatsApp Admin: +6281342092072
e-Mail: perpustakaan@undipa.ac.id
© 2025 — Perpustakaan UNDIPA Makassar - SLiMS