Skripsi/Tugas Akhir
Implementasi Machine Learning pada Sistem Rekomendasi E-Commerce UMKM Kerajinan Tangan
ABSTRAK
Usaha Mikro, Kecil, dan Menengah (UMKM) berperan penting dalam pertumbuhan ekonomi Indonesia, termasuk di Kota Makassar, yang merupakan pusat perdagangan di Indonesia Timur. Sektor UMKM kerajinan tangan di Makassar memberikan kontribusi signifikan dalam menciptakan lapangan kerja dan meningkatkan kesejahteraan. Namun, banyak UMKM kesulitan menjangkau konsumen dan mempromosikan produk secara efektif di era digital. Penelitian ini bertujuan mengimplementasikan sistem rekomendasi berbasis Machine Learning untuk meningkatkan penjualan UMKM kerajinan tangan di Makassar. Metode yang digunakan adalah Item-Based Collaborative Filtering untuk menganalisis perilaku konsumen dan preferensi produk. Hasil penelitian menunjukkan bahwa sistem rekomendasi berbasis Machine Learning berhasil diterapkan pada platform e-commerce yang dikembangkan. Implementasi sistem rekomendasi diharapkan dapat menjadi solusi dalam mengatasi tantangan digitalisasi dan meningkatkan daya saing UMKM di pasar e-commerce.
Kata Kunci: UMKM, Kerajinan Tangan, Sistem Rekomendasi, Machine Learning, Item Based Collaborative Filtering, E-Commerce
ABSTRACT
Micro, Small, and Medium Enterprises (MSMEs) play a vital role in Indonesia's economic growth, including in Makassar City, which serves as a major trade center in Eastern Indonesia. The handicraft MSME sector in Makassar significantly contributes to job creation and the improvement of community welfare. However, many MSMEs face challenges in reaching consumers and promoting their products effectively in the digital era. This study aims to implement a Machine Learning-based recommendation system to increase the sales of handicraft MSMEs in Makassar. The method employed is Item-Based Collaborative Filtering, which analyzes consumer behavior and product preferences. The results show that the Machine Learning-based recommendation system was successfully implemented on the developed e-commerce platform. This system helps MSMEs reach the right consumers, expand market reach, and optimize data-driven marketing strategies. The implementation of this recommendation system is expected to be a viable solution to address digitalization challenges and enhance the competitiveness of MSMEs in the e commerce market.
Keywords: UMKM, Handicrafts, Recommendation System, Machine Learning, Item-Based Collaborative Filtering, E-Commerce
Tidak ada salinan data
Universitas DIPA Makassar
NPP 7371142D1000002
Jln. Perintis Kemerdekaan KM.9
Telp. (0411)587194
Hotline: +6281228221994
WhatsApp Admin: +6281342092072
e-Mail: perpustakaan@undipa.ac.id
© 2025 — Perpustakaan UNDIPA Makassar - SLiMS