Skripsi/Tugas Akhir
Implementasi Model Prediksi Penjualan Kuota Internet Berbasis LSTM (Long Short Term Memory)
ABSTRAK
Penjualan kuota internet terus berkembang seiring meningkatnya kebutuhan digital. Namun, pola penjualan yang dinamis dan dipengaruhi banyak faktor, seperti tren, harga, dan musim, membuat prediksi menjadi tantangan. Penelitian ini mengimplementasikan model prediksi Long Short-Term Memory (LSTM) untuk menangkap pola data time series lebih akurat dibandingkan metode tradisional. LSTM, sebagai varian Recurrent Neural Network (RNN), unggul dalam mempelajari dependensi jangka panjang pada data sekuensial. Data penjualan dikumpulkan dari sumber terpercaya, diproses dengan teknik praproses seperti normalisasi dan pembagian data menjadi set pelatihan, validasi, dan pengujian. Model LSTM diuji dengan berbagai konfigurasi parameter, seperti jumlah layer, neuron, dan learning rate, untuk memperoleh performa terbaik. Hasil menunjukkan model LSTM memiliki tingkat kesalahan rendah berdasarkan nilai Mean Squared Error (MSE) dan Mean Absolute Error (MAE), membuktikan kemampuannya menjelaskan variabilitas data secara signifikan. Studi ini membantu pelaku usaha memahami pola penjualan dan merancang strategi pemasaran lebih efektif.
Kata Kunci: LSTM, Penjualan Kuota, Deep Learning, Prediksi
ABSTRACT
Internet quota sales continue to grow as digital needs increase. However, sales patterns are dynamic and influenced by many factors, such as trends, prices, and seasons, making prediction a challenge. This research implements a Long ShortTerm Memory (LSTM) prediction model to capture time series data patterns more accurately than traditional methods. LSTM, as a variant of Recurrent Neural Network (RNN), excels at learning long-term dependencies on sequential data. Sales data is collected from reliable sources, processed with preprocessing techniques such as normalization and division of data into training, validation, and testing sets. The LSTM model was tested with various parameter configurations, such as the number of layers, neurons, and learning rate, to obtain the best performance. Results show that the LSTM model has a low error rate based on Mean Squared Error (MSE) and Mean Absolute Error (MAE) values, proving its ability to significantly explain data variability. This study helps businesses understand sales patterns and design more effective marketing strategies.
Keywords: LSTM, Quota Sales, Deep Learning, Prediction
SKR 25-51 0864TI | SKR 25-51 MAP i - 0864TI | Perpustakan UNDIPA (Rak Skripsi/Tugas Akhir) | Tidak Dipinjamkan-No Loan |
Universitas DIPA Makassar
NPP 7371142D1000002
Jln. Perintis Kemerdekaan KM.9
Telp. (0411)587194
Hotline: +6281228221994
WhatsApp Admin: +6281342092072
e-Mail: perpustakaan@undipa.ac.id
© 2025 — Perpustakaan UNDIPA Makassar - SLiMS