Skripsi/Tugas Akhir
Penerapan Algoritma K-Means untuk Clustering Data Kemiskinan Menggunakan Orange Data Mining (Studi Kasus: Kabupaten/Kota Provinsi Sulawesi Selatan)
ABSTRAK
Menurut data dari Badan Pusat Statistika (BPS) berdasarkan Anggaran Pendapatan dan Belanja Daerah (APBD), provinsi Sulawesi Selatan termasuk dalam 10 provinsi terkaya di Indonesia. Penduduk miskin di provinsi Sulawesi Selatan pada Maret 2021 berjumlah 786.980 menurun hingga 765.460 penduduk miskin pada September 2021. Penduduk yang berada di pedesaan mendominasi turunnya angka kemiskinan di provinsi Sulawesi Selatan. Berbanding terbalik dengan penduduk di perkotaan, presentase pada Maret 2021 sebesar 4,77 persen naik hingga 4,89 persen di bulan September 2021. Untuk mengatasinya, diperlukan penanganan yang berbeda sesuai kondisi setiap Kabupaten/Kota, dengan salah satu cara yaitu mengelompokkan karakteristik setiap wilayah berdasarkan indikator kemiskinan. Pada penelitian ini, clustering dilakukan dengan metode algoritma K-Means menggunakan Orange Data Mining berdasarkan indikator kemiskinan yaitu persentase penduduk miskin usia 15 tahun ke atas, angka melek huruf dan angka partisipasi sekolah, persentase tidak bekerja, bekerja di kegiatan informal, bekerja di kegiatan formal, persentase bekerja di sektor pertanian dan bekerja bukan di sektor pertanian, persentase pengeluaran perkapita untuk makanan, persentase rumah tangga miskin yang menggunakan air layak, persentase rumah tangga miskin yang menggunakan jamban sendiri/bersama, serta jumlah beras yang diterima perbulan. Hasil penelitian didapatkan 6 cluster berdasarkan karakteristik daerah dari nilai rata – rata tertinggi dan terendah dari setiap indikator kemiskinan.
Kata Kunci: Cluster, Kemiskinan, K-Means, Orange Data Mining
ABSTRACT
According to data from the Central Statistics Agency (BPS) based on the Regional Budget (APBD), South Sulawesi Province is included in the 10 richest provinces in Indonesia. Poor population in South Sulawesi Province in March 2021 totaling 786,980 decreased to 765,460 poor people in September 2021. Residents in the countryside dominated the decline in poverty in South Sulawesi Province. Inversely proportional to the population in urban areas, the percentage in March 2021 amounted to 4.77 percent up to 4.89 percent in September 2021. To overcome this, different handling is needed according to the conditions of each district/city, with one way that is grouping the characteristics of each region based on poverty indicators. In this study, clustering was carried out by the K-Means algorithm method using Orange Data Mining based on poverty indicators, namely the percentage of poor people aged 15 years and over, literacy rates and school participation rates, the percentage of not working, working in informal activities, working in formal activities. Percentage of Work in the Agriculture Sector and Working Not in the Agriculture Sector, Percentage of Per capita expenditure for food, the percentage of poor households that use decent water, the percentage of poor households that use their own/joint latrines, as well as the amount of rice received per month. The results obtained 6 clusters based on the characteristics of the area of the highest and lowest average value of each poverty indicator.
Keyword: Cluster, Poverty, K-Means, Orange Data Mining
Tidak ada salinan data
Universitas DIPA Makassar
NPP 7371142D1000002
Jln. Perintis Kemerdekaan KM.9
Telp. (0411)587194
Hotline: +6281228221994
WhatsApp Admin: +6281342092072
e-Mail: perpustakaan@undipa.ac.id
© 2024 — Perpustakaan UNDIPA Makassar - SLiMS